
H: Laplace’s Equation in Spherical Coordinates
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for r < 1, 0 ≤ φ ≤ π, 0 ≤ θ < 2π

u(1, θ, φ) = g(θ, φ) for 0 ≤ φ ≤ π, 0 ≤ θ < 2π
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You can view this as a steady-state heat conduction problem with speci-
fied heat distribution maintained on the outer boundary of the unit sphere.
Since the equation seems a little intimidating, let us only consider some spe-
cial cases.

Case 1: g(θ, φ) = γ = constant
Then, since g does not depend on θ and φ, neither does u, so (1) becomes
d
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where we have invoked the boundedness condition at r = 0 by setting a = 0.
Remark: Constants and constant/r are the only solutions (“potentials”) that
depend only on the radial distance from the origin; u = 1/r is called the
Newton potential in physics.

Case 2: g = g(φ) only
Then (1) becomes
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u(1, φ) = g(φ) 0 ≤ φ ≤ π

Let u(r, φ) = R(r)Φ(φ). Then
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again giving us a Cauchy-Euler type equation to solve on 0 ≤ r < 1. Also,
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+ λ sin(φ)Φ = 0 for 0 ≤ φ ≤ π (3)

For (2), R = rα gives characteristic equation α2 + α − λ = 0 with solu-
tions 2α = −1 ±

√
1 + 4λ. For (3) we put it in a more standard form

by letting Φ(φ) = P (x), where x = cos(φ). Hence, d
dφ

= − sin(φ) d
dx

, so

sin(φ) d
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+ λ sin(φ)P = 0, or
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This is Legendre’s equation. It is also a singular Sturm-Liouville equation.
It can be shown through a study of series solutions that the only bounded
solutions are when λ = n(n+1), with n = 0, 1, 2, . . ., and in fact the solutions
to

d
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)
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are polynomials Pn(x) called the Legendre polynomials. A scaling has
been adopted that has become convention so that

P0(x) ≡ 1 , P1(x) = x . (6)

0.1 Some Properties of Legendre Polynomials

1. Pure recurrence relation: The P ′ns are related by

nPn(x) = (2n− 1)xPn−1(x)− (n− 1)Pn−2(x) n ≥ 2

So, given (6), we have, for example,
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x ,
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,

etc.
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2. Rodrigue’s formula: Pn(x) = 1
2nn!

dn

dxn
[(x2 − 1)n].

This can be used to obtain various properties, including the important
orthogonality relation, that is

3. Orthogonality relation:∫ 1

−1
Pn(x)Pm(x)dx =

{
0 n 6= m

2
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n = m

In spherical coordinates this gives us∫ π

0

Pn(cosφ)Pm(cosφ) sinφ dφ =

{
0 n 6= m

2
2m+1

n = m

4. Note that Pn(x) is an odd function of x if n = odd, and an even function
if n is even: Pn(−x) = (−1)nPn(x).

0.2 Solution to Laplace’s Equation in the Ball

Now, if λ = n(n + 1), from the characteristic equation for the R equation,
α2 + α − λ = 0, roots are α = n,−(n + 1), so R(r) = arn + br−(n+1).
For boundedness of R at r = 0, set b = 0. Thus, we have the modes
un(r, φ) = rnPn(cosφ). Therefore,

u(r, φ) =
∞∑
n=0

Anr
nPn(cosφ) .

For the boundary condition, using (6),(7),
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)
,

where x = cosφ. Hence, integrating both sides and using the orthogonality
relation, we have∫ π
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=
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which implies

Am =
2m+ 1

2

∫ π

0

g(φ)Pm(cosφ) sinφ dφ for m ≥ 0 .

Example: Consider{
∇2u = 0 r < 1, 0 ≤ φ ≤ π
u(1, φ) = cos(3φ)

Thus, in the unit ball, u does not depend on θ (so on latitude lines u =
constant, the constant only depending on the value of φ). Note that

cos(3φ) = cos((2 + 1)φ) = cos(2φ) cos(φ)− sin(2φ) sin(φ)

= (2 cos2(φ)− 1) cos(φ)− 2 sin2(φ) cos(φ)

= 2 cos3(φ)− cos(φ)− 2(cos(φ)− cos3(φ))

= 4 cos3(φ)− 3 cos(φ) = 4x3 − 3x .

But P3(x) = 5
2
x3 − 3

2
x, so 4x3 − 3x = 8

5

(
5
2
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2
x
)
− 3

5
x, so that cos(3φ) =

8
5
P3(cosφ)− 3

5
P1(cosφ) = g(φ). Therefore,

u(r, φ) =
∞∑
n=0

Anr
nPn(cosφ)

= A0 + A1rP1(cosφ) + A2r
2P2(cosφ) + A3r

3P3(cosφ)

= −3

5
rP1(cosφ) +

8

5
r3P3(cosφ) .

Exercise: Write the solution u(r, φ) to{
∇2u = 0 r < 1, 0 ≤ φ ≤ π
u(1, φ) = cos(4φ)

in an expansion in Legrendre polynomials.
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