H: Laplace’s Equation in Spherical Coordinates

Consider

2v72,, _ 0O 20u 1 0 : du 1 9%u __
r*Vau = o (7’ E) + sin(d))% (&n(gf))%) +T(¢)W =0

forr<1,0<op <7 0<0<2r (1)

u(1,0,¢) =g(0,¢) for0< ¢ <m 0<6<2rm

You can view this as a steady-state heat conduction problem with speci-
fied heat distribution maintained on the outer boundary of the unit sphere.
Since the equation seems a little intimidating, let us only consider some spe-
cial cases.

Case 1: g(0,¢) =~ = constant

Then, since g does not depend on 6 and ¢, neither does u, so (1) becomes
L)y =0 => =0 = y=-24h=b=y,

where we have invoked the boundedness condition at » = 0 by setting a = 0.
Remark: Constants and constant/r are the only solutions ( “potentials”) that
depend only on the radial distance from the origin; u = 1/r is called the

Newton potential in physics.

Case 2: g = g(¢) only
Then (1) becomes

% (rzg—qj) + sin1(¢)a% <sin(q§)g—g> =0 r<1,0<¢p<m

u(l,0) = g(¢) 0<¢<m
Let u(r,¢) = R(r)®(¢). Then

1d [ ,dR\ 1 d (., .add\
Rdr (?" %) = " Tein(d) do (Sm@%) =4

d ( ,dR _ LR _ dR B

which gives

dr



again giving us a Cauchy-Euler type equation to solve on 0 < r < 1. Also,

d dd

PP (sin(gb)%) + Asin(@p)® =0 for0<o¢p < (3)
For (2), R = r® gives characteristic equation a? + a — A = 0 with solu-
tions 2a = —1 + /1 +4\. For (3) we put it in a more standard form
by letting ®(¢) = P(z), where x = cos(¢). Hence, d%) = —sin(¢)ZL, so
sin(¢) <L (sin®(¢)%L) 4+ Asin(¢)P = 0, or

d dP

%<(1—x2)%)+/\f’:0 for —-1<az<1. (4)

This is Legendre’s equation. It is also a singular Sturm-Liouville equation.
It can be shown through a study of series solutions that the only bounded

solutions are when A = n(n+1), withn = 0,1,2,..., and in fact the solutions
to

d dpP

— (1 —2*)— HP =

- (( x)dx)+n(n+ ) 0 (5)

are polynomials P,(x) called the Legendre polynomials. A scaling has
been adopted that has become convention so that

Pyx)=1, Pi(x)=1z . (6)

0.1 Some Properties of Legendre Polynomials

1. Pure recurrence relation: The P!s are related by
nP,(x) = (2n —1)aP,_1(z) — (n —1)P,_2(x) n>2

So, given (6), we have, for example,

3 1 5 3 35 15 3
Py(z) = §$2 g Py(z) = 5373 — 5% Py(z) = §IE4 — ZxQ + 3 (7)
63 35 15
Ps(x) = §x5 — Zx3 gx ,

1
Po(w) = ¢ (2312° — 3152 + 1042* — 5) ,

etc.



2. Rodrigue’s formula: P,(z) = 5L (2% — 1)"].

27! dz™
This can be used to obtain various properties, including the important

orthogonality relation, that is

3. Orthogonality relation:
1
/ P,(z) P, (x)dx = { 0 2 n7m

Imy1 LT M
In spherical coordinates this gives us

0 n#m
n=m

| Palcoso)Pu(cos o sing do = {

2m+1

4. Note that P,(z) is an odd function of x if n = odd, and an even function
if n is even: P,(—x) = (—1)"P,(x).

0.2 Solution to Laplace’s Equation in the Ball

Now, if A = n(n 4 1), from the characteristic equation for the R equation,
o> +a— X =0, roots are @ = n,—(n + 1), so R(r) = ar™ + br~ 1),
For boundedness of R at r = 0, set b = 0. Thus, we have the modes
un(r, ¢) = r"P,(cos ¢). Therefore,

Z A,r"P,(cos ¢) .

For the boundary condition, using (6),(7),
- A A
= ZAnPn(cos ¢) = (Ao + Az + {(3&2 —-1)+ 73(51‘3 —3z)+ .. ) :
n=0

where x = cos ¢. Hence, integrating both sides and using the orthogonality
relation, we have

/O7T 9(@) Pr(cos @) sin ¢ dpp = Z A, / . (cos @) Py, (cos ¢) sin ¢ do

Z / )P (x)dx = 2Am
o 1 2m +1




which implies

A =22 E2 [ g(0)Pa(cos )sing do form = 0.
0
Example: Consider
Viu=0 r<l,0<¢<m
u(1, ) = cos(3¢)

Thus, in the unit ball, u does not depend on € (so on latitude lines u
constant, the constant only depending on the value of ¢). Note that

cos(3¢) = cos((2 + 1)¢) = cos(2¢) cos(¢) — sin(2¢) sin(¢)
= (2cos*(¢) — 1) cos(¢) — 2sin?(¢) cos(¢)
— 2c08%(9) — cos(9) — 2(cos(9) — cos*(9))
= 4cos’(¢) — 3cos(¢) = 42 — 3 .

But Py(z) = 52% — 3z, so 42® — 3z = £ (22° — 32) — 2x, so that cos(3¢)

8 Py(cos ¢) — 2 Pi(cos ) = g(¢). Therefore,

u(r.6) = 3 At Py(cos o)
n=0
= Ay + ArPy(cos ¢) + Ayr?Py(cos ¢) + Asr® Py(cos ¢)

= —%TPl(COS ®) + §7“3P3(COS o) .

FEzercise: Write the solution u(r, ¢) to

VZu=0 r<l,0<¢<m
u(1,¢) = cos(49)

in an expansion in Legrendre polynomials.



