

H: Laplace's Equation in Spherical Coordinates

Consider

$$r^2 \nabla^2 u = \frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) + \frac{1}{\sin(\phi)} \frac{\partial}{\partial \phi} \left(\sin(\phi) \frac{\partial u}{\partial \phi} \right) + \frac{1}{\sin^2(\phi)} \frac{\partial^2 u}{\partial \theta^2} = 0$$

for $r < 1, 0 \leq \phi \leq \pi, 0 \leq \theta < 2\pi$ (1)

$$u(1, \theta, \phi) = g(\theta, \phi) \quad \text{for } 0 \leq \phi \leq \pi, 0 \leq \theta < 2\pi$$

You can view this as a steady-state heat conduction problem with specified heat distribution maintained on the outer boundary of the unit sphere. Since the equation seems a little intimidating, let us only consider some special cases.

Case 1: $g(\theta, \phi) = \gamma = \text{constant}$

Then, since g does not depend on θ and ϕ , neither does u , so (1) becomes

$$\frac{d}{dr} \left(r^2 \frac{du}{dr} \right) = 0 \Rightarrow \frac{du}{dr} = \frac{a}{r^2} \Rightarrow u = -\frac{a}{r} + b = b = \gamma,$$

where we have invoked the boundedness condition at $r = 0$ by setting $a = 0$.

Remark: Constants and constant/ r are the only solutions (“potentials”) that depend only on the radial distance from the origin; $u = 1/r$ is called the **Newton potential** in physics.

Case 2: $g = g(\phi)$ only

Then (1) becomes

$$\begin{cases} \frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) + \frac{1}{\sin(\phi)} \frac{\partial}{\partial \phi} \left(\sin(\phi) \frac{\partial u}{\partial \phi} \right) = 0 & r < 1, 0 \leq \phi \leq \pi \\ u(1, \phi) = g(\phi) & 0 \leq \phi \leq \pi \end{cases}$$

Let $u(r, \phi) = R(r)\Phi(\phi)$. Then

$$\frac{1}{R} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) = -\frac{1}{\Phi \sin(\phi)} \frac{d}{d\phi} \left(\sin(\phi) \frac{d\Phi}{d\phi} \right) = \lambda,$$

which gives

$$\frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) - \lambda R = r^2 \frac{d^2 R}{dr^2} + 2r \frac{dR}{dr} - \lambda R = 0 \quad (2)$$

again giving us a Cauchy-Euler type equation to solve on $0 \leq r < 1$. Also,

$$\frac{d}{d\phi} \left(\sin(\phi) \frac{d\Phi}{d\phi} \right) + \lambda \sin(\phi) \Phi = 0 \quad \text{for } 0 \leq \phi \leq \pi \quad (3)$$

For (2), $R = r^\alpha$ gives characteristic equation $\alpha^2 + \alpha - \lambda = 0$ with solutions $2\alpha = -1 \pm \sqrt{1+4\lambda}$. For (3) we put it in a more standard form by letting $\Phi(\phi) = P(x)$, where $x = \cos(\phi)$. Hence, $\frac{d}{d\phi} = -\sin(\phi) \frac{d}{dx}$, so $\sin(\phi) \frac{d}{dx} (\sin^2(\phi) \frac{dP}{dx}) + \lambda \sin(\phi) P = 0$, or

$$\frac{d}{dx} \left((1-x^2) \frac{dP}{dx} \right) + \lambda P = 0 \quad \text{for } -1 < x < 1. \quad (4)$$

This is **Legendre's equation**. It is also a *singular* Sturm-Liouville equation. It can be shown through a study of series solutions that the only bounded solutions are when $\lambda = n(n+1)$, with $n = 0, 1, 2, \dots$, and in fact the solutions to

$$\frac{d}{dx} \left((1-x^2) \frac{dP}{dx} \right) + n(n+1)P = 0 \quad (5)$$

are polynomials $P_n(x)$ called the **Legendre polynomials**. A scaling has been adopted that has become convention so that

$$P_0(x) \equiv 1, \quad P_1(x) = x. \quad (6)$$

0.1 Some Properties of Legendre Polynomials

1. **Pure recurrence relation:** The P'_n 's are related by

$$nP_n(x) = (2n-1)xP_{n-1}(x) - (n-1)P_{n-2}(x) \quad n \geq 2$$

So, given (6), we have, for example,

$$\begin{aligned} P_2(x) &= \frac{3}{2}x^2 - \frac{1}{2}, \quad P_3(x) = \frac{5}{2}x^3 - \frac{3}{2}x, \quad P_4(x) = \frac{35}{8}x^4 - \frac{15}{4}x^2 + \frac{3}{8}, \quad (7) \\ P_5(x) &= \frac{63}{8}x^5 - \frac{35}{4}x^3 + \frac{15}{8}x, \\ P_6(x) &= \frac{1}{16} (231x^6 - 315x^4 + 104x^2 - 5), \\ &\text{etc.} \end{aligned}$$

2. **Rodrigue's formula:** $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} [(x^2 - 1)^n]$.

This can be used to obtain various properties, including the important orthogonality relation, that is

3. **Orthogonality relation:**

$$\int_{-1}^1 P_n(x) P_m(x) dx = \begin{cases} 0 & n \neq m \\ \frac{2}{2m+1} & n = m \end{cases}$$

In spherical coordinates this gives us

$$\int_0^\pi P_n(\cos \phi) P_m(\cos \phi) \sin \phi d\phi = \begin{cases} 0 & n \neq m \\ \frac{2}{2m+1} & n = m \end{cases}$$

4. Note that $P_n(x)$ is an odd function of x if n is odd, and an even function if n is even: $P_n(-x) = (-1)^n P_n(x)$.

0.2 Solution to Laplace's Equation in the Ball

Now, if $\lambda = n(n + 1)$, from the characteristic equation for the R equation, $\alpha^2 + \alpha - \lambda = 0$, roots are $\alpha = n, -(n + 1)$, so $R(r) = ar^n + br^{-(n+1)}$. For boundedness of R at $r = 0$, set $b = 0$. Thus, we have the modes $u_n(r, \phi) = r^n P_n(\cos \phi)$. Therefore,

$$u(r, \phi) = \sum_{n=0}^{\infty} A_n r^n P_n(\cos \phi).$$

For the boundary condition, using (6),(7),

$$g(\phi) = \sum_{n=0}^{\infty} A_n P_n(\cos \phi) = \left(A_0 + A_1 x + \frac{A_2}{2}(3x^2 - 1) + \frac{A_3}{2}(5x^3 - 3x) + \dots \right),$$

where $x = \cos \phi$. Hence, integrating both sides and using the orthogonality relation, we have

$$\begin{aligned} \int_0^\pi g(\phi) P_m(\cos \phi) \sin \phi d\phi &= \sum_{n=0}^{\infty} A_n \int_0^\pi P_n(\cos \phi) P_m(\cos \phi) \sin \phi d\phi \\ &= \sum_{n=0}^{\infty} A_n \int_{-1}^1 P_n(x) P_m(x) dx = \frac{2A_m}{2m+1} \end{aligned}$$

which implies

$$A_m = \frac{2m+1}{2} \int_0^\pi g(\phi) P_m(\cos \phi) \sin \phi \, d\phi \quad \text{for } m \geq 0.$$

Example: Consider

$$\begin{cases} \nabla^2 u = 0 & r < 1, 0 \leq \phi \leq \pi \\ u(1, \phi) = \cos(3\phi) \end{cases}$$

Thus, in the unit ball, u does not depend on θ (so on latitude lines $u =$ constant, the constant only depending on the value of ϕ). Note that

$$\begin{aligned} \cos(3\phi) &= \cos((2+1)\phi) = \cos(2\phi) \cos(\phi) - \sin(2\phi) \sin(\phi) \\ &= (2\cos^2(\phi) - 1) \cos(\phi) - 2\sin^2(\phi) \cos(\phi) \\ &= 2\cos^3(\phi) - \cos(\phi) - 2(\cos(\phi) - \cos^3(\phi)) \\ &= 4\cos^3(\phi) - 3\cos(\phi) = 4x^3 - 3x. \end{aligned}$$

But $P_3(x) = \frac{5}{2}x^3 - \frac{3}{2}x$, so $4x^3 - 3x = \frac{8}{5}(\frac{5}{2}x^3 - \frac{3}{2}x) - \frac{3}{5}x$, so that $\cos(3\phi) = \frac{8}{5}P_3(\cos \phi) - \frac{3}{5}P_1(\cos \phi) = g(\phi)$. Therefore,

$$\begin{aligned} u(r, \phi) &= \sum_{n=0}^{\infty} A_n r^n P_n(\cos \phi) \\ &= A_0 + A_1 r P_1(\cos \phi) + A_2 r^2 P_2(\cos \phi) + A_3 r^3 P_3(\cos \phi) \\ &= -\frac{3}{5}r P_1(\cos \phi) + \frac{8}{5}r^3 P_3(\cos \phi). \end{aligned}$$

Exercise: Write the solution $u(r, \phi)$ to

$$\begin{cases} \nabla^2 u = 0 & r < 1, 0 \leq \phi \leq \pi \\ u(1, \phi) = \cos(4\phi) \end{cases}$$

in an expansion in Legendre polynomials.